Kamis, 12 Januari 2012

STEROID

BAB I
PENDAHULUAN
Tumbuhan merupakan sumber berbagai jenis senyawa kimia mulai dari struktur dan sifatnya yang sederhana sampai yang rumit sekalipun. Berbagai jenis senyawa kimia yang terkandung dalam tumbuhan akan bernilai ekonomis dengan adanya khasiat dan manfaat yang dimilikinya. Upaya pencarian tumbuhan yang berkhasiat telah lama dilakukan baik untuk mencari senyawa barn ataupun menambah keanekaragaman senyawa yang telah ada. Hasil pencarian tersebut dilanjutkan dengan upaya pengenalan zat kemudian diidentifikasi khasiatnya dan dijadikan sebagai bahan obat modern maupun ekstrak untuk fitofarmaka.
Indonesia terkenal dengan khasanah tanaman obatnya. Namun deinikian, penelitian sekaligus pengembangan tanaman obat Indonesia dirasakan belum maksimal. Padahal, dunia barat kini diliputi semangat kembali ke alam, salah satunya mencari upaya pengobatan melalui bahan-bahan yang tersebar di alam.
Telah berabad-abad lamanya masyarakat menggunakan obat tradisional yang didasarkan pada pengalaman yang diwariskan secara turun-temurun dan mendapat perhatian serius oleh pemerintah untuk dikembangkan dalam upaya peningkatan kesehatan masyarakat.
Salah satu komponen kimia yang terdapat dalam tumbuhan adalah steroida. Steroid adalah senyawa organik lemak sterol tidak terhidrolisis yang dapat dihasil reaksi penurunan dari terpena atau skualena.



BAB II
PEMBAHASAN
II.1 URAIAN UMUM STEROID
Steroid adalah senyawa organik lemak sterol tidak terhidrolisis yang dapat dihasil reaksi penurunan dari terpena atau skualena. Steroid merupakan kelompok senyawa yang penting dengan struktur dasar sterana jenuh (bahasa Inggris: saturated tetracyclic hydrocarbon : 1,2-cyclopentanoperhydrophenanthrene) dengan 17 atom karbon dan 4 cincin. Senyawa yang termasuk turunan steroid, misalnya kolesterol, ergosterol, progesteron, dan estrogen. Pada umunya steroid berfungsi sebagai hormon. Steroid mempunyai struktur dasar yang terdiri dari 17 atom karbon yang membentuk tiga cincin sikloheksana dan satu cincin siklopentana. Perbedaan jenis steroid yang satu dengan steroid yang lain terletak pada gugus fungsional yang diikat oleh ke-empat cincin ini dan tahap oksidasi tiap-tiap cincin.

Struktur Steroid dan Penomorannya

Senyawa yang termasuk turunan steroid, misalnya kolesterol, ergosterol, progesteron, dan estrogen. Pada umunya steroid berfungsi sebagai hormon. Steroid mempunyai struktur dasar yang terdiri dari 17 atom karbon yang membentuk tiga cincin sikloheksana dan satu cincin siklopentana. Perbedaan jenis steroid yang satu dengan steroid yang lain terletak pada gugus fungsional yang diikat oleh ke-empat cincin ini dan tahap oksidasi tiap-tiap cincin.
Lemak sterol adalah bentuk khusus dari steroid dengan rumus bangun diturunkan dari kolestana dilengkapi gugus hidroksil pada atom C-3, banyak ditemukan pada tanaman, hewan dan fungsi. Semua steroid dibuat di dalam sel dengan bahan baku berupa lemak sterol, baik berupa lanosterol pada hewan atau fungsi, maupun berupa sikloartenol pada tumbuhan. Kedua jenis lemak sterol di atas terbuat dari siklisasi squalena dari triterpena. Kolesterol adalah jenis lain lemak sterol yang umum dijumpai. Steroid merupakan obat ampuh dalam mengatasi peradangan dan meredakan nyeri, selain itu steroid yang langsung bekarja pada kimiawi otak juga bermanfaat untuk meningkatkan mood. Seseorang yang tidak mengalami peradangan tetapi mengkonsumsi steroid dapat merasa nyaman dalam waktu yang relatif cepat.Tetapi penggunaan steroid sebagai pereda nyeri dan meningkatkan mood juga mempunyai efek samping yang kadang-kadang justru membahayakan.
Steroid merupakan senyawa bioaktif yang bermanfaat bagi kesehatan tubuh. Beberapa steroid di antaranya berhasil diisolasi dari berbagai tanaman. Namun, sampai saat ini kondisi optimum ekstraksi dan jenis steroid dari jamur tiram coklat (Pleurotus cystidiosus) belum diketahui. Tujuan penelitian ini adalah menentukan kondisi optimum ekstraksi dan jenis steroid dari jamur tiram coklat. Hasil-hasil penelitian diharapkan dapat memberi informasi mengenai kondisi optimum dari ekstraksi dan jenis steroid dari jamur tiram coklat. Isolasi steroid dari jamur dilakukan dengan ekstraksi menggunakan pelarut campuran dari kloroform, metanol
dan air pada berbagai suhu. Fase kloroform dipisahkan dari fase airnya, lalu dipekatkan dan dikeringkan.

II. 2 ASAL USUL STEROIDA
Percobaan-percobaan biogenetik menunjukkan bahwa steroid yang terdapat dialam berasal dari triterpenoid. Steroid yang terdapat dalam jaringan hewan beasal dari triterpenoid lanosterol sedangkan yang terdapat dalam jaringan tumbuhan berasal dari triterpenoid sikloartenol setelah triterpenoid ini mengalami serentetan perubahan tertentu. tahap- tahap awal dari biosintesa steroid adalah sama bagi semua steroid alam yaitu pengubahan asam asetat melalui asam mevalonat dan skualen (suatu triterpenoid) menjadi lanosterol dan sikloartenol. Percobaan-percobaan menunjukkan bahwa skualen terbentuk dari dua molekul farnesil pirofosfat yang bergabung secara ekor-ekor yang segera diubah menjadi 2,3-epoksiskualen. selanjutnya lanosterol terbentuk oleh kecenderungan 2,3-epoksiskualen yang mengandung lima ikatan rangkap untuk melakukan siklisasi ganda. Siklisasi ini diawali oleh protonasi guigus epoksi dan diikuti oleh pembukaan lingkar epoksida. Kolesterol terbentuk dari lanosterol setelah terjadi penyingkiran tiga gugus metil dari molekul lanosterol yakni dua dari atom karbon C-4 dan satu dari C-14. Penyingkiran ketiga gugus metil ini berlangsung secara bertahap, mulai dari gugus metil pada C-14 dan selanjutnya dari C-4. Kedua gugus metil pada kedua C-4 disingkirkan sebagai karbon dioksida, setelah keduanya mengalami oksidasi menjadi gugus karboksilat. sedangkan gugus metil pada C-14 disingkirkan sebagai asam format setelah gugus metil itu mengalami oksidasi menjadi gugus aldehid.
Percobaan dengan jaringan hati hewan, emnggunakan 2,3 epoksiskualen yang diberi tanda dengan isotop 180 menunjukkan bahwa isotop 180 itu digunakan untuk pembuatan lanosterol menghasilkan (180)- lanosterol radioaktif. Hasil percobaan ini membuktikan bahwa 2,3- epoksiskualen terlibat sebagai senyawa antara dalam biosintesa steroida. Molekul kolestrol terdiri atas tiga lingkar enam yang tersusun seperti fenantren dan terlebur dalam suatu lingkar lima. Hidrokarbon tetrasiklik jenuh yang mempunyai sistem lingkar demikian dan terdiri dari 17 atom karbon sering ditemukan pada banyak senyawa yang tergolong senyawa bahan alam yang disebut stroida.

II. 3 TATA NAMA STEROIDA
Sebagaimana senyawa organik lainnya, tata nama sistematika dari steroid didasarkan pada struktur dari hidrokarbon steroid tertentu. Nama hidrokarbon steroid itu ditambahi awalan atau akhiran yang menunjukkan jenis substituen. Sedangkan, posisi dari substituen itu ditunjukkan oleh nomor atom karbon, dimana substituen itu terikat. Penomoran atom karbon dalam molekul steroid adalah sebagai berikut :



Berdasarkan struktur umum steroid tersebut, maka jenis-jenis hidrokarbon induk dari steroid adalah sebagai berikut :
NAMA JUMLAH ATOM C JENIS RANTAI SAMPING ( R )

Androstan
19
-H
Pregnan 21
-CH 2CH3
Kolan 24
-CH(CH 3)(CH 2 2) CH3
Kolestan 27
-CH(CH 3)(CH 2 3) CH(CH 3)2
Ergostan 28
-CH(CH 3)(CH 2 2) CH(CH 3)CH(CH 3)2
Stigmastan 29
-CH(CH 3)(CH 2 2) CH(C 2H 5)CH(CH 3)2


II. 4 STEREOKIMIA STEROIDA
Stereokimia steroida telah diselidiki oleh para ahli kimia dengan menggunakan cara analisa sinar X dari struktur kristalnya atau cara-cara kimia,
Dari model molekul menunjukkan bahwa molekul steroida adalah planar (datar). Atom atau gugus yang terikat pada inti molekul dapat dibedakan atas dua jenis yaitu :
1. Atom atau gugus yang terletak disebelah atas bidang molekul yaitu pada pihak yang sama dengan gugus metil pada C10 dan C13 yang disebut konfigurasi. Ikatan-ikatan yang menghubungkan atom atau gugus ini dengan inti molekul digambarkan dengan garis tebal
2. Atom atau gugus yang berada disebelah bawah bidang molekul yang disebut dengan konfigurasi dan ikatan-ikatannya digam,barkan dengan garis putus-putus. Sedangkan atom atau gugus yang konfigurasinya belum jelas apakah atau. Dinyatakan dengan garis bergelombang. Kedua konfigurasi steroida tersebut mempunyai perbedaan yaitu :
• Pada konfigurasi pertama, Cincin A dan cincin B terlebur sedemikian rupa sehingga hubungan antara gugus metil pada C10 dan atom hidrogen pada atom C 5 adalah trans (A/B trans). Pada konfigurasi ini gugus metil pada C 10 adalah dan atom hidrogen pada C 5 adalah.

• Pada konfigurasi kedua, peleburan cincin A dan B menyebabkan hubungan antara gugus metil dab atom hidrogen menjadi Cis (A/B Cis) dan konfigurasi kedua substituen adalah. Steroida dimana konfigurasi atom C 5 adalah termasuk deret 5.


Pada kedua konfigurasi tersebut, hubungan antara cincin B/C dan C/D keduanya adalah trans. Cincin B dan C diapit oleh cincin A dan cincin D sehingga perubahan konfirmasi dari cincin B dan cincin C sukar terjadi. Oleh karena itu peleburan cincin B/C dalam semua steroida alam adalah trans Akan tetapi perubahan konfirmasi dari cincin A dan Cincin B dapat terjadi. Perubahan terhadap cincin A menyebabkan steroida dapat berada dalam salah satu dari kedua konfigurasi tersebut. Perubahan terhadap cincin D dapat m,engakibatkan hal yang sama, sehingga peleburan cincin C/D dapat cis atau trans. Peleburan cincin C/D adalah trans ditemukan pada hampir sebagian besar steroida alam kecuali kelompok aglikon kardiak dimana C/D adalah cis. Pada semua steroida alam, substituen pada C10 dan C 9 berada pada pihak yang berlawanan dengan bidang molekul yaitiu trans. Dan juga hubungan antara sunstituen pada posisi C 8 dan C14 adalah trans kecuali pada senyawa-senyawa yang termasuk kelompok aglikon kardiak. Dengan demikian, stereokimia dari steroida alan mempunyai suatu pola umum, yaitu substituen-substituen pada titik-titik temu dari cincin sepanjang tulang punggung molekul yaitu C-5-10-9-8-14-13 mempunyai hubungan trans.
Sifat-sifat steroida sama seperti senyawa organik lainnya, yaitu reaksi-reaksi dari gugus-gugus fungsi yang terikat pada molekul steroida tersebut. Misalnya, gugus 3-hidroksil menunjukkan semua sifat dari alkohol sekunder, tak ubahnya seperti ditunjukkan oleh 2-propanol. Gugus hidroksil ini dapat diesterifikasi untuk menghasilkan ester atau dioksidasi dengan berbegai oksidator yang menghasilkan suatu keton. Karena bentuk geometri gugus 3-hidroksil sedikit berbeda dengan sifat-sifat gugus hidroksil yang terikat pada posisi lain. Karena faktor geometri maka gugus 3-hidroksil memperlihatkan sifat yang sidikit berbeda dengan 3- hidroksil, yaitu gugus 3-hidroksil lebih sukar mengalami dehidrasi dibandingkan dengan gugus 3-hidroksil walaupun prinsip dari reaksi yang terjadi adalah sama. Kestabilan steroida ditentukan oleh interaksi 1,3 yang terjadi antara suatu gugus fungsi yang berorientasi aksial dan molekul akan lebih stabil apabila sebagian besar gugus fungsi berorientasi ekuatorial. Laju reaksi juga ditentukan oleh faktor sterik, tanpa kecuali gugus hidroksi ekuatorial lebih mudah diesterifikasi dari pada gugus aksial. Akan tetapi gugus fungsi aksial lebih mudah dioksidasi dari pada gugus hidroksil yang ekuatorial.

II 5 BRASSINOLIDE, STEROID PERANGSANG TUMBUHAN
hubungan brassinolide dengan steroid

Brassinolide atau secara ilmiah disebut sebagai brassinosteroid merupakan salah satu dari sekian banyak jenis hormon yang ditemukan di dalam tumbuhan. Sebetulnya hormon yang ditemukan di tumbuhan ini, memiliki struktur kimia yang mirip dengan steroid yang sudah terlebih dahulu ditemukan pada kingdom animalia (hewan). Baik yang terdapat di tumbuhan maupun di hewan, merupakan hormon yang larut dalam lemak, dan mempunyai struktur basa tetrasiklo. Struktur basa memiliki empat cincin yang saling terpaut dan terdiri dari tiga cincin sikloheksan dan satu cincin siklopentan.
Brassinolide tersintesis dari asetil CoA melalui jalur asam mevalonik di dalam metabolisme sel tumbuhan. Perbedaan pre-kursor di jalur asam mevalonik, dalam biosintesis steroid pada tumbuhan dan hewan menghasilkan produk steroid yang berbeda, pada tumbuhan menghasilkan brassinolide dan pada hewan menghasilkan kolesterol, dan yang lain lagi pada cendawan menghasilkan ergosterol (Bishop & Yokota, 2001)


Yang menarik dari brassinolide.
Brassinolide adalah hormon terbaru yang ditemukan pada tumbuhan. Brassinolide baru berhasil diisolasi dan dikenali pada tahun 1979 oleh Grove dan rekan-rekannya. Coba kita bandingkan dengan beberapa hormon tumbuhan yang telah dikenal sejak lama. Auksin adalah hormon tumbuhan yang paling pertama berhasil diisolasi yaitu pada tahun 1885 oleh Salkowski dan rekan-rekannya. Selanjutnya etilen berhasil diisolasi pada tahun 1901 oleh Dimitry Neljubow, giberellin pada tahun 1938 oleh Yabuta dan Sumuki, sitokinin pada tahun 1955 oleh Miller dan rekan-rekannya, dan berikutnya adalah asam absisik yang berhasil diisolasi pada tahun 1963 oleh Frederick Addicott (www.plant-hormones.info). Karena masih merupakan penemuan terbaru, di berbagai text book Indonesia yang membahas tentang hormon tumbuhan, masih sangat jarang ditemukan pembahasan tentang brassinolide / brassinosteroid, terkecuali pada jurnal-jurnal ilmiah internasional dan informasi online melalui internet.
Penemuan brassinolide ini sebetulnya tidak disengaja, ketika pada tahun 1970 Mitchel dan rekan-rekannya menemukan perangsang pertumbuhan pada ekstrak minyak yang dihasilkan di serbuk sari, yang pada awalnya diperkirakan sebagai giberellin, karena mirip dengan sifat promotif giberellin pada tumbuhan. Keberhasilan Grove dan rekan-rekannya pada tahun 1979, mengisolasi senyawa yang terkandung di dalam minyak inilah yang selanjutnya mengantar kepada studi lebih lanjut mengenai brassinolide (termasuk jalur biosintesis, respon dan signaling-nya). Sampai akhirnya juga diketahui adanya kemiripan struktur dengan steroid pada hewan dan cendawan.
Fungsi brassinolide.
Seperti disampaikan sebelumnya, bahwa brassinolide memiliki respon yang mirip dengan giberellin. Pada suatu kasus misalnya seorang mahasiswa pertanian melakukan penelitian tentang respon giberellin pada sebuah tanaman kerdil abnormal, mereka akan bingung ketika tidak terdapat respon tanaman terhadap aplikasi giberelin, selanjutnya mereka menjadi tambah kebingungan ketika berhasil mengisolasi gen yang terkait dengan fungsi giberelin ternyata tidak terdapat perbedaan sekuens dibandingkan dengan tanaman normalnya. Bisa jadi sifat kerdil abnormal tersebut disebabkan karena rendahnya kandungan brassinolide dalam sel atau penyimpangan gen terkait dengan fungsi brassinolide.
Secara rinci beberapa fungsi brassinolide adalah sebagai berikut :
• meningkatkan laju perpanjangan sel tumbuhan
• menghambat penuaan daun (senescence)
• mengakibatkan lengkuk pada daun rumput-rumputan
• menghambat proses gugurnya daun
• menghambat pertumbuhan akar tumbuhan
• meningkatkan resistensi pucuk tumbuhan kepada stress lingkungan
• menstimulasi perpanjangan sel di pucuk tumbuhan
• merangsang pertumbuhan pucuk tumbuhan
• merangsang diferensiasi xylem tumbuhan
• menghambat pertumbuhan pucuk pada saat kahat udara dan endogenus karbohidrat.
Manfaat-manfaat semacam itu cukup baik untuk dipelajari lebih lanjut pada tingkat ristek, akan tetapi untuk aplikasi secara massal di lapangan rasanya belum memungkinkan, karena harga brassinolide dan kelompok brassinosteroid lainnya masih cukup mahal.






BAB III
PENUTUP

Kesimpulan
Steroid adalah senyawa organik lemak sterol tidak terhidrolisis yang dapat dihasil reaksi penurunan dari terpena atau skualena. Steroid merupakan kelompok senyawa yang penting dengan struktur dasar sterana jenuh (bahasa Inggris: saturated tetracyclic hydrocarbon : 1,2-cyclopentanoperhydrophenanthrene) dengan 17 atom karbon dan 4 cincin.
Senyawa yang termasuk turunan steroid, misalnya kolesterol, ergosterol, progesteron, dan estrogen. Pada umunya steroid berfungsi sebagai hormon. Steroid mempunyai struktur dasar yang terdiri dari 17 atom karbon yang membentuk tiga cincin sikloheksana dan satu cincin siklopentana.
Perbedaan jenis steroid yang satu dengan steroid yang lain terletak pada gugus fungsional yang diikat oleh ke-empat cincin ini dan tahap oksidasi tiap-tiap cincin.

DAFTAR PUSTAKA

1. Sastrohamidjojo. H, 1996, Sintesis Bahan alam, Cetakan ke-1, Liberty, Yogyakarta

2. Achmad. S.A, 1986, Kimia Organik Bahan Alam, Universitas Terbuka, Jakarta
3. http://www.chem-is-try.org/materi_kimia/kimia- kesehatan/biomolekul/steroid/ di akses tanggal 14 februari 2011
4. http://www.chem-is-try.org/artikel_kimia/biokimia/brassinolide_steroid_perangsang_tumbuhan/ di akses tanggal 12 fabruari 2011
5. http://salmanalayyubi.blogspot.com di akses tanggal 10 februari 2011

Tidak ada komentar:

Posting Komentar